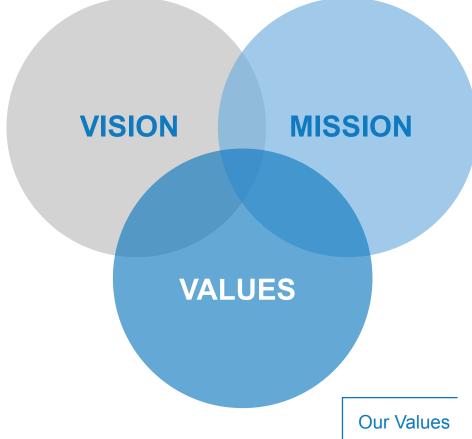


2017 Annual Summary ReportWindsor Utilities Commission


OUR VISION, MISSION AND VALUES

Our Vision

To be a trusted leader in providing exceptional value and services to our customers and stakeholders.

Our Mission

To provide safe and reliable water services in a cost effective manner.

Leadership Accountability Integrity

CONTENTS

Message from Windsor Utilities Commission	6
Introduction	9
Schedule 1. Treatment Equipment	10
Schedule 6. Operational Checks, Sampling and Testing - General	11
Schedule 7. Operational Checks	11
Schedule 10. Microbiological Sampling and Testing	12
Schedule 13. Chemical Sampling and Testing	13
Schedule 15.1 Lead	18
Schedule 16. Reporting Adverse Test Results and Other Problems	19
Schedule 17. Corrective Action	20
Schedule 22. Summary Reports for Municipalities	21
Capital Renewal Program	22
Appendix A Operational Charts	27
Appendix B 2017 O.Reg 170/03 Annual Report	38

A Proud Partner in Our Community

2017 has been a year of milestone anniversaries. As Canada celebrated its 150th anniversary, Windsor celebrated 125 years. At Windsor Utilities Commission, we celebrated a different kind of milestone - 160 years since the beginning of local water services in Windsor.

In 1857, the town of Windsor installed a wooden hand pump, at the foot of Brock Street, to serve the needs of the local community. At that time, the pump was the sole common source of water for the residents and businesses of the town.

We have come a long way since then.

In 2017, we take a moment to remember our roots and to reflect on the journey that has allowed us to continuously improve our facilities, our services and the safety and reliability of our community water supply.

As it was for the town, in 1857, our focus remains the well-being of our community — the quality of life we provide when we deliver safe, clean, reliable water. At Windsor Utilities Commission, it is still our goal to be a trusted leader in supplying this precious, essential commodity to our families and businesses.

Water enables life. Our water supply in Windsor, continues to meet Ontario quality standards, in a heavily regulated environment. Our employees' dedication to excellence allows our residents and businesses to thrive. We are proud of that commitment.

Local water services have been provided in Windsor for 160 years.

Windsor Utilities Commission is a Proud Partner in Our Community

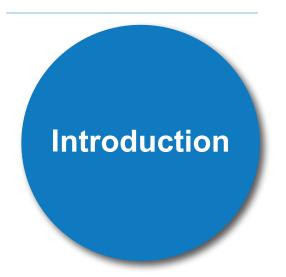
As we reflect on the past, we envision the future - and we design our capacity to deliver what our customers will need. Innovation, technology and collaboration are not just words - they are the keys to our future. As our community grows and changes, so will we.

Throughout 2017, we continued to build the partnerships we need to deliver that future - partnerships with businesses, water sector organizations, educators and regulatory bodies. In doing so, we continued to uncover solutions for sustainable water - not only locally, but on a global scale.

The foundation for our future begins with our new water reservoir, which will ensure the reliability of our supply for many decades to come. We are proud of the talented, innovative, hardworking employees, who envisioned this need and enlisted the support they required to make it happen.

We look forward to continuing to build on the work we have begun, empowered by dedicated employees and powerful partnerships.

Sincerely,


James

Jim Drummond, Board Chair Windsor Utilities Commission

Hany Rosi

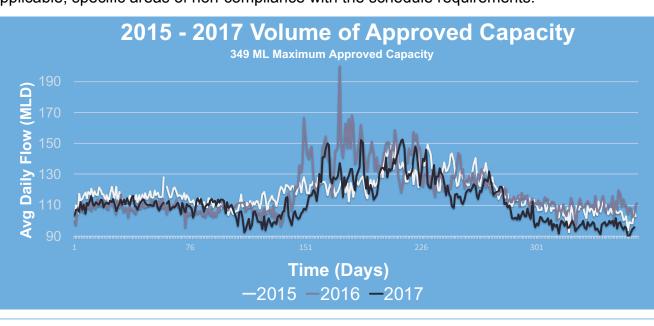
Garry Rossi, Vice President Water Operations *ENWIN Utilities Ltd.*

In 2017, Windsor Utilities Commission produced 41,015 megalitres of potable water for use by the citizens of the City of Windsor, the Town of LaSalle and the Town of Tecumseh.

The attached summary (see Appendix A, Table 1) provides a detailed breakdown of the monthly production rates, including the average day, peak day and peak hour for each of the months. The volume of water transferred to the Town of LaSalle and the Town of Tecumseh is also provided.

In 2017 Windsor Utilities Commission produced 41,015 megalitres of potable water for use by the citizens of the City of Windsor, the Town of LaSalle and the Town of Tecumseh.

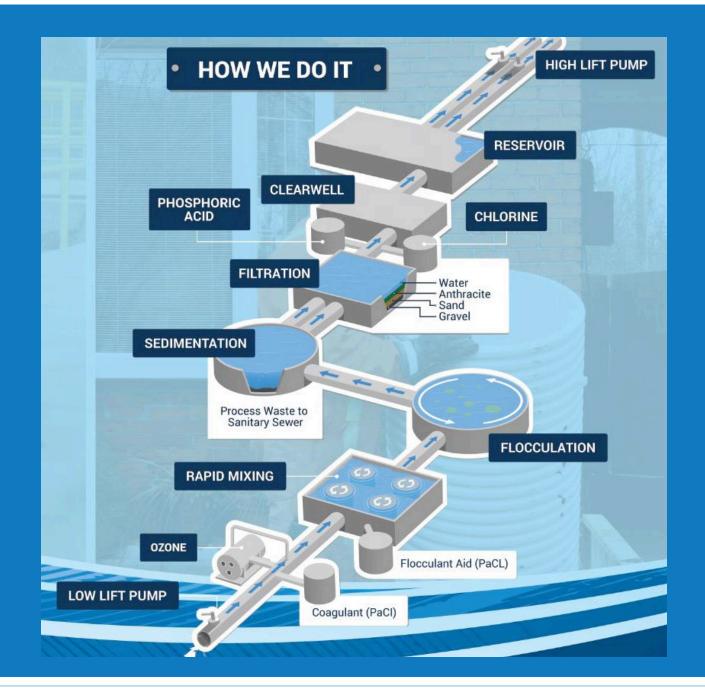
2017 Total Treated Water by Municipality


Volume in megalitres (ML)

Town of Lasalle	Town of Tecumseh	City of Windsor
3,175.1	3,585.2	34,255.2

Percentage of water delivered to each served Municipality.

Under Ontario Reg. 170/03 there are a number of Schedules that outline the requirements for compliance with the Safe Drinking Water Act (SDWA). This report highlights the requirements of the applicable section of the regulation along with a statement of compliance or, if applicable, specific areas of non-compliance with the schedule requirements.


Schedule 1

Treatment Equipment

Schedule 1 dictates that the owner of a drinking water system shall ensure that approved water treatment equipment, as specified in the facility Licence or Certificate of Approval, is provided and is in operation whenever water is being supplied for potable use. Further, the regulation requires that the equipment is being operated in a manner

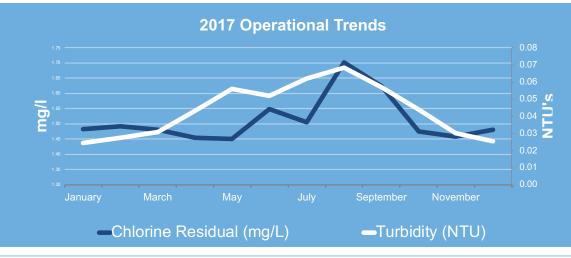
that achieves its design capabilities and that only certified operators are carrying out operation of the system. Below is a schematic of the overall treatment train for the A.H. Weeks Treatment Plant.

In the calendar year 2017, WUC complied fully with this section of the regulations.

Schedule 6

Operational Checks, Sampling and Testing - General

This schedule outlines:


- the frequency of sampling and equipment checks
- the requirement for chlorine residual testing to be carried out at the time microbiological samples are collected
- the location at which samples are to be collected
- the form of sampling to be undertaken and the requirements for continuous monitoring equipment
- clarification on how samples are to be handled and recorded, and dictates the need for an appropriately accredited laboratory to carry out the sample analysis.

In the calendar year 2017, WUC complied fully with this section of the regulations.

Schedule 7

Operational Checks

This schedule specifies the requirements for continuous monitoring equipment for free chlorine residual, turbidity and fluoride and the required location for this equipment. The regulation dictates the requirement for regular collection and analysis of samples by an appropriately certified individual. The chart below summarizes the results for the above mentioned parameters. In the calendar year 2017, WUC complied fully with this section of the regulations.

Schedule 10

Microbiological Sampling and Testing

This schedule provides the requirements for sampling and testing of microbiological parameters.

The schedule states that for Large Municipal Systems serving a population of more than 100,000 people, the required monthly frequency of sampling is 100 distribution samples, plus one additional sample for every 10,000 people served, with at least three samples being taken in each week. Each of these samples are to be tested for *Escherichia coli* and total coliform, with a requirement that at least 25% of the samples required to be tested for general bacteria population expressed as colony counts on a heterotrophic plate count. Windsor's required sampling frequency is 130 samples monthly.

In 2017, 1970 samples were collected and analysed, an average of 164 samples per month. Approximately 59% of the distribution samples were also analysed for

NUMBER OF SAMPLES

heterotrophic plate count. In addition, each sample was tested for free chlorine residual at the time the sample was taken.

Schedule 10 states that a treated water sample must be taken at least once per week and tested for *Escherichia coli*, total coliform and general bacteria population expressed as colony counts on a heterotrophic plate count. Windsor's treated water samples were generally collected on a daily basis and were tested by an accredited third-party laboratory.

The schedule further states that a raw water sample must be taken at least once per week, before any treatment is applied to the water, and that the sample be tested for *Escherichia Coli* and total coliform. Samples were collected and tested on average five days per week. The following chart indicates the number of samples taken on a monthly basis.

days per week. The following chart indicates the number of samples taken on a monthly basis. 2017 Microbiological Sample Count

■ Treated

Raw

■ Distribution

Schedule 13

Chemical Sampling and Testing

This schedule provides the requirements for sample collection and testing for a variety of chemical components in drinking water. Additionally, it lists the Maximum Acceptable Concentration (MAC) for each component. The requirements are outlined below along with the status of Windsor's sampling program.

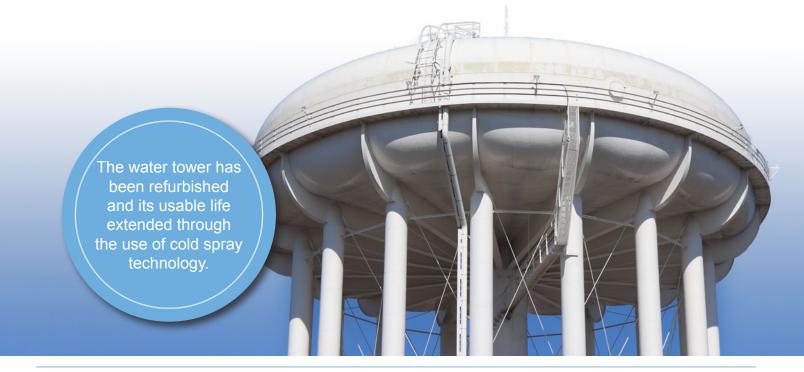
Inorganics

One sample must be collected and tested every 12 months if the source is surface water and tested for every parameter set out in Schedule 23. (see pg. 14, Table 13.1)

In 2017, samples were collected and tested for every parameter set out in Schedule 23 on a quarterly basis.

Lead

One sample must be collected and tested every 12 months for Lead. (see pg. 14, Table 13.1)


On behalf of Windsor Utilities Commission, ENWIN collects and tests samples based on Ministry guidelines

Windsor collected samples and tested for lead in a treated water sample and a distribution sample on a quarterly basis.

Nitrates and Nitrites

The owner of a drinking-water system and the operating authority for the system shall ensure that at least one water sample is taken every three months and tested for nitrate and nitrite. (see Table 13.1)

In 2017, on behalf of Windsor Utilities Commission, *ENWIN* collected samples and tested for nitrates and nitrites on a quarterly basis.

Schedule 13 (con't)

Sodium

The schedule stipulates that at least one water sample is taken every 60 months and tested for sodium. (see Table 13.1)

On behalf of Windsor Utilities Commission, *ENWIN* last collected and sampled for sodium on January 4, 2017.

Organics

One sample must be collected and tested every 12 months, if the source is surface water, and tested for every parameter set out in Schedule 24. (see pg. 15-16 Table 13.2)

During 2017, on behalf of Windsor Utilities Commission, *ENWIN* collected samples and tested for every parameter set out in Schedule 24 on a quarterly basis.

Trihalomethane (THM's)

For any system that provides chlorination, one distribution sample will be collected and tested for trihalomethanes every 3 months. (see pg. 15-16 Table 13.2)

ENWIN, on behalf of Windsor Utilities Commission collected samples and tested for trihalomethanes on a quarterly basis.

Table 13.1 – Inorganics, Lead, Nitrates, Nitrites and Sodium Sample Results

Parameter	Sample Date	Result Value	Unit of Measure	Exceedance
Antimony	October 4, 2017	0.00008	mg/L	No
Arsenic	October 4, 2017	0.0004	mg/L	No
Barium	October 4, 2017	0.0153	mg/L	No
Boron	October 4, 2017	0.027	mg/L	No
Cadmium	October 4, 2017	0.00001	mg/L	No
Chromium	October 4, 2017	0.00072	mg/L	No
Lead	October 4, 2017	0.00001 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Mercury	October 4, 2017	0.00001 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Selenium	October 4, 2017	0.00015	mg/L	No
Sodium	January 4, 2017	5.66	mg/L	No
Uranium	October 4, 2017	0.000085	mg/L	No
Fluoride	January 4, 2017	0.09	mg/L	No
Nitrite	October 4, 2017	0.003 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Nitrate	October 4, 2017	0.204	mg/L	No

Table 13.2 – Organics and THM Sample Results

			Unit of	
Parameter	Sample Date	Result Value	Measure	Exceedance
Alachlor	Oct 4, 2017	0.00002 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Atrazine + N-dealkylated metobolites	Oct 4, 2017	0.00001 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Azinphos-methyl	Oct 4, 2017	0.00005 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Benzene	Oct 4, 2017	0.00032 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Benzo(a)pyrene	Oct 4, 2017	0.000004 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Bromoxynil	Oct 4, 2017	0.00033 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Carbaryl	Oct 4, 2017	0.00005 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Carbofuran	Oct 4, 2017	0.00001 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Carbon Tetrachloride	Oct 4, 2017	0.00016 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Chlorpyrifos	Oct 4, 2017	0.00002 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Diazinon	Oct 4, 2017	0.00002 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Dicamba	Oct 4, 2017	0.00020 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
1,2-Dichlorobenzene	Oct 4, 2017	0.00041 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
1,4-Dichlorobenzene	Oct 4, 2017	0.00036 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
1,2-Dichloroethane	Oct 4, 2017	0.00035 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
1,1-Dichloroethylene (vinylidene chloride)	Oct 4, 2017	0.00033 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Dichloromethane	Oct 4, 2017	0.00035 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
2,4-Dichlorophenol	Oct 4, 2017	0.00015 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
2,4-Dichlorophenoxy acetic acid (2,4-D)	Oct 4, 2017	0.00019 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Diclofop-methyl	Oct 4, 2017	0.0004 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Dimethoate	Oct 4, 2017	0.00003 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Diquat	Oct 4, 2017	0.001 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Diuron	Oct 4, 2017	0.00003 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Glyphosate	Oct 4, 2017	0.001 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Haloacetic Acids (HAA5) - Running Annual Average	Oct 4, 2017	0.0053 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Malathion	Oct 4, 2017	0.00002 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
MCPA	Oct 4, 2017	0.00012 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Metolachlor	Oct 4, 2017	0.00001 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Metribuzin	Oct 4, 2017	0.00002 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Monochlorobenzene	Oct 4, 2017	0.0003 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Paraquat	Oct 4, 2017	0.001 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Pentachlorophenol	Oct 4, 2017	0.00015 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Phorate	Oct 4, 2017	0.00001 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Picloram	Oct 4, 2017	0.001 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No

Polychlorinated Biphenyls (PCB)	Oct 4, 2017	0.00004 <mdl< th=""><th>mg/L</th><th>No</th></mdl<>	mg/L	No
	-			
Prometryne	Oct 4, 2017	0.00003 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Simazine	Oct 4, 2017	0.00001 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
THM – Running Annual Average	Oct 4, 2017	0.0090	mg/L	No
Q1 2017 = 0.006 mg/L	Jan 4, 2017			No
Q2 2017 = 0.007 mg/L	April 3, 2017			No
Q3 2017 = 0.012 mg/L	July 3, 2017			No
Q4 2017 = 0.011 mg/L	Oct 4, 2017			No
Terbofos	Oct 4, 2017	0.00001 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Tetrachlorethylene	Oct 4, 2017	0.00035 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
2,3,4,6-Tetrachlorophenol	Oct 4, 2017	0.00020 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Triallate	Oct 4, 2017	0.00001 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Trichloroethylene	Oct 4, 2017	0.00044 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
2,4,6-Trichlorophenol	Oct 4, 2017	0.00025 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Trifluralin	Oct 4, 2017	0.00002 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Vinyl Chloride	Oct 4, 2017	0.00017 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No

Table 13.3 Bromate Sample Results

Date of legal instrument issued	Parameter	Date Sampled	Result	Unit of Measure
MDWL 025-101	*Bromate - Treated	1-Jan-17 to 31-Dec-17	0.004	mg/L
MDWL 025-101	*Bromate - Distribution	1-Jan-17 to 31-Dec-17	0.004	mg/L

^{*} Reported as running Annual Average

Lead

This schedule provides the requirements for sampling and testing of Lead.

The schedule states that for Large Municipal Systems serving a population of more than 100,000 people, two sets of samples must be taken. One set of samples shall be taken from December 15, 2016 to April 15, 2017 and the second set from June 15, 2017 to October 15, 2017. The minimum number of samples to be collected for a population of 100,000 or more is 130 sample locations per round. *These samples include private, non-private and distribution.* Each of these samples are to be tested for Lead.

A total of 496 Lead sample locations have been collected and tested in 2017. 295 sample private and non-private and

201 samples in distribution.

Of the sample locations tested, 30 sample locations exceeded the 10 ug/L reporting requirement.

In the calendar year 2017, In the calendar year 2017, WUC complied fully with the requirements of Schedule 15.1.

The minimum number of samples to be collected for a population of 100,000 or more is 130 sample locations per round.

New infrastructure is installed at the site of the new George Avenue Reservoir.

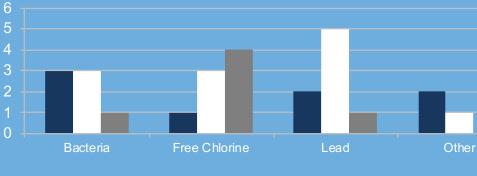
Schedule 16

Reporting Adverse Test Results and Other Problems

If a sample collected and tested indicates an adverse result as outlined in the regulations, the owner of a drinking water system must report the result to the Medical Officer of Health (MOH) and the Spills Action Centre (SAC) of the Ministry of Environment and Climate Change (Ministry). If an observation, other than an adverse test, results indicates that a drinking water system is directing water that may not be adequately disinfected to users of the water system, the observation must be reported to the MOH and the SAC.

If a report is required under this section, a verbal report must be provided to the

MOH by speaking directly to a person at the Windsor Essex County Health Unit (WECHU) or the designated on call representative. In addition, a verbal report must be provided to the Ministry by contacting the SAC.


These verbal reports of adverse water conditions must be verified by written notice within 24 hours to the MOH and the SAC, specifying the nature of the adverse result, actions being taken or observation and what corrective action is being taken.

Within seven days of resolution of a problem, a follow up written notice is to be provided outlining the resolution that gave rise to the adverse result report.

In 2017, there were six adverse incidents requiring notification of the MOH and the SAC. Of these, four resulted from low chlorine being less than 0.05 mg/L within the distribution system, one resulted from a lead exceedance, one resulted from Coliform at the a Sample stations in the distribution.

In all situations where it was determined that there was an adverse result, notification was made to the MOH and the SAC.

■2015 **■**2016 **■**2017

Schedule 17

Corrective Action

This schedule outlines required corrective action to be followed with the determination of an adverse result requiring notification.

In all cases, the required corrective action was followed as directed by the Medical Officer of Health.

The current reservoir at the completion of construction in 1949.

Summary Reports for Municipalities

Schedule 22

The new George Avenue Reservoir has capacity for 5 million litres of treated water.


Not later than March 31 of each year, a summary report must be prepared for the preceding calendar year and submitted to members of municipal council and members of a municipal services board, if one exists.

The submission of this report fulfils the requirement for this section of the regulations.

Summarizing tables are attached for review (see pg. 28-35)

- 2017 treated water volume (Table 1)
- 2017 volume as a percentage of approved plant capacity (Table 2)
- 2017 microbiological sample counts (Table 3)
- 2017 distribution chlorine residuals (Table 4)
- 2017 operational parameters (Table 5)

A copy of Schedule 23 (inorganic test parameters) and Schedule 24 (organic test parameters) are attached for information, along with the 2017 Annual Report as previously submitted and as required by the regulation. (See 59. 36-37)

WUC undertook several capital projects in 2017 including:

- Water meter replacements
- Watermain replacement program
- Phase I Filter bed rehabilitation at A.H. Weeks Plant
- Mirlee decommissioning and installation of new CAT at A.J. Brian Pumping Station
- City Hall De-piping
- Reservoir.

Brief descriptions of each project are noted below.

Water Meter Replacement Program

The goal of WUC's ongoing water meter replacement program is to replace all damaged, frozen, defective, aging and obsolete water meters, both in residential

and industrial,
commercial
and institutional
(ICI) settings.
The program also
incorporates the installation of
new meters on both residential and
newly constructed services in the City of
Windsor, and ICI (Industrial / Commercial /
Institutional.)

Through this program, WUC installed 8,002 new meters in 2017 (approximately 11% of our total meter population.) The average age of our total meter population is 9.4 years. For ICIs only, the average age is 6.9 years.

New meters provide benefits including:

increased
 accuracy in
 billing for our
customers

 improved efficiency in meter reading as reads can be obtained via radio frequency (RF)

enhanced ability to identify the sources and manage the causes of non-revenue water, thereby limiting revenue loss for both WUC and the City of Windsor.

The program will continue in 2018, and over the next five years *ENWIN*, on behalf of WUC, will replace approximately 8,000 meters per year. Efforts will be focused on the completion of certain segments of the city, enabling entire meter routes to be read with a "drive-by" (RF) method. Approximately 68% of the meters are now RF-enabled.

Watermain Replacement Program

The WUC capital renewal program involved the replacement of approximately 11.0 km of existing cast and ductile iron watermains, as well as water services with new PVC pipelines and polyethylene/copper tubing, respectively. Water services are typically replaced from the new main to the property line. This project included watermains, which no longer provided adequate service and were deemed to have the highest risk to public health.

- Installed 86 hydrants
- Removed 85 Old Public use Hydrants

The Ministry and Ontario Fire Codes (OFC) mandate minimum levels of performance required throughout the water distribution system.

Reservoir

Phase 1, "The Pipeline" project was completed by D'Amore Construction in Q3 of 2017.

Phase 2, "The Box" has been awarded to Kenaidan/WSP consortium. AECOM Consulting is *ENWIN*'s representative on this project. The project is currently under construction and is anticipated to be completed in Q2 of 2018.

Mirlee Decommissioning and Installation of new CAT at A.J. Brian Pumping Station

At the A.J. Brian Pumping Station, two Mirlee diesel motors were coupled to two high lift

pumps. The motors were 1920's vintage, and showing their age. Repair parts were not available. A new Caterpillar diesel motor was purchased, and both of the Mirlees motors were decommissioned. This new diesel motor is much easier to start and run than the old diesel motors. It is far more efficient and emits far fewer emissions.

Phase I - Filter Bed Rehabilitation at A.H. Weeks Plant

There was a failure in the under drain system of filter #1. After some investigation,

determined that the under drain system was obsolete and could not be repaired. After some research, WUC decided to replace the current plastic under drain system with a new stainless steel system. In preparation for this work, the filter media and the old under drain system were removed. It was then discovered that there was some spalling of the concrete walls of the filter. It is recommended that the concrete surface should be coated to prevent further degradation.

it was

The new underdrains have been ordered, the coating of the filter walls has been tendered and new filter media has been purchased.

City Hall DEW Piping

WUC and District Energy Windsor are supplying heating and cooling energy to the new City Hall building. Hot and cold water is delivered to the building through a piping network in Windsor's downtown core. The service will save the City of Windsor money, reduce its carbon footprint and add a source of revenue for WUC.

Appendix A - Operational Charts

Windsor Utilities Commission

Table 1 - 2017 Treated Water Volume

	Total Pumped Volume	Daily Average Volume	Мах	Maximum Daily Volume	Mii	Minimum Daily Volume	suj	Instantaneous Peak Volume	Town of Lasalle Volume	Town of Tecumseh Volume	City of Windsor Volume
MONTH	WF	WF		ML		ML		ML	ML	ML	ML
JANUARY	3,417.16	110.231	12	115.660	_	103.640	4	211.269	249.722	245.238	2,922.200
FEBRUARY	3,108.30	111.011	8	116.230	25	106.700	18	252.787	217.835	220.945	2,669.520
MARCH	3,395.90	109.545	21	114.440	18	102.100	22	162.283	244.613	225.374	2,925.913
APRIL	3,144.46	104.815	3	113.640	20	92.410	14	159.837	227.988	246.115	2,670.357
MAY	3,181.44	102.627	18	115.060	4	93.870	2	169.756	264.147	280.300	2,636.993
JUNE	3,849.39	128.313	13	150.250	9	112.750	11	238.205	338.776	362.498	3,148.116
JULY	4,089.78	131.928	2	152.000	13	113.620	31	223.360	395.005	392.212	3,302.563
AUGUST	4,075.86	131.479	1	152.340	59	116.650	1	220.723	395.340	398.529	3,281.991
SEPTEMBER	3,562.07	118.736	56	131.840	3	108.250	22	202.700	191.937	377.284	2,992.849
OCTOBER	3,292.03	106.411	4	121.840	26	95.850	15	190.219	275.437	320.791	2,695.802
NOVEMBER	2,916.75	97.225	3	101.530	10	91.630	58	219.200	225.941	261.426	2,429.383
DECEMBER	2,982.37	96.172	11	101.430	25	89.430	16	216.800	148.357	254.513	2,579.500
TOTAL	41,015.510								3,175.1	3,585.2	34,255.187
AVERAGE	3,417.959								264.6	298.8	2,854.599

Note: Volumes reported in megalitres

Table 2 - 2017 Volume as a Percentage of Approved Plant Capacity (Part 1 - January to June)

	Jan	January	February	uary	March	rch	April	iri	May	ay.	June	ıe
\$	Average	Plant	Average	Plant	Average	Plant	Average	Plant	Average	Plant	Average	Plant
Date	Daily Flow (MLD)	Capacity %	Daily Flow (MLD)	Capacity %	Daily Flow (MLD)	Capacity %						
_	103.6	30%	110.4	32%	111.2	32%	112.8	32%	0.66	28%	116.2	33%
2	106.9	31%	113.5	33%	112.5	32%	109.7	31%	94.5	27%	115.9	33%
က	107.5	31%	110.5	32%	106.8	31%	113.6	33%	102.7	78%	116.4	33%
4	105.9	30%	114.3	33%	107.7	31%	111.5	32%	93.9	27%	119.9	34%
2	112.0	32%	112.0	32%	109.1	31%	113.5	33%	0.66	28%	118.7	34%
9	106.7	31%	109.8	31%	108.6	31%	113.6	33%	101.4	78%	112.8	32%
7	110.2	32%	114.6	33%	110.1	32%	112.8	32%	99.2	28%	119.6	34%
∞	104.4	30%	116.2	33%	111.6	32%	105.0	30%	6.96	28%	130.1	37%
o	111.4	32%	109.2	31%	109.3	31%	112.1	32%	8.86	28%	124.9	36%
10	109.8	31%	108.8	31%	104.1	30%	108.3	31%	99.2	28%	140.8	40%
7	113.3	32%	106.9	31%	111.5	32%	109.5	31%	8.76	28%	141.3	40%
12	115.7	33%	110.2	32%	107.1	31%	110.3	32%	102.3	78%	146.6	42%
13	109.7	31%	112.1	32%	105.3	30%	106.4	30%	103.6	30%	150.3	43%
4	109.6	31%	113.6	33%	110.7	32%	104.0	30%	101.2	78%	148.9	43%
15	112.1	32%	113.5	33%	109.4	31%	102.5	79%	105.8	30%	128.0	37%
16	110.8	32%	111.6	32%	109.4	31%	8.96	28%	105.9	30%	124.1	36%
17	110.2	32%	110.1	32%	107.3	31%	105.1	30%	115.0	33%	128.0	37%
18	113.5	33%	109.8	31%	102.1	78%	106.1	30%	115.1	33%	126.6	36%
19	113.2	32%	110.3	32%	106.4	30%	101.8	78%	103.4	30%	127.2	36%
20	108.8	31%	109.8	31%	111.7	32%	92.4	76%	99.5	78%	128.9	37%
21	110.9	32%	109.5	31%	114.4	33%	94.0	27%	8.96	28%	137.4	39%
22	111.4	32%	112.4	32%	111.5	32%	97.1	28%	104.8	30%	131.7	38%
23	110.8	32%	112.6	32%	114.2	33%	101.0	78%	106.2	30%	115.3	33%
24	112.8	32%	108.2	31%	109.4	31%	94.7	27%	102.6	78%	127.9	37%
25	111.8	32%	106.7	31%	105.6	30%	97.2	28%	101.1	78%	122.7	35%
26	113.9	33%	109.3	31%	109.1	31%	105.2	30%	101.5	78%	127.1	36%
27	111.0	32%	110.8	32%	110.7	32%	106.2	30%	104.8	30%	128.8	37%
28	106.3	30%	111.5	32%	109.8	31%	102.9	78%	105.8	30%	133.5	38%
29	108.7	31%	0.0	%0	113.1	32%	99.4	28%	107.7	31%	133.4	38%
30	110.9	32%			114.2	33%	99.1	28%	106.8	31%	126.6	36%
31	113.4	33%			112.0	32%			109.9	31%		

Table 2 - 2017 Volume as a Percentage of Approved Plant Capacity (Part 2 - July to December)

Table 3 - 2017 Microbiological Sample Count

Month	January	February	March	April	May	June	July	August	September	October	November	December
DISTRIBUTION	179	165	154	162	165	160	176	165	165	165	169	145
TREATED	157	156	167	152	181	160	176	161	155	177	182	135
RAW	21	19	20	18	22	20	21	20	19	21	22	17
TOTAL	357	340	341	332	368	340	373	346	339	363	878	297

Table 4 - 2017 Distribution Chlorine Residuals

JANUARY TO MARCH 2017

		D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13	D14	D15	D16	D17	D18	D20	D21	D22
Jan	LOW	1.23	1.17	0.92	0.97	0.86	1.12	1.00	1.12	0.88	1.36	1.11	1.13	0.94	1.08	1.07	1.09	0.95	0.93	1.05	0.89	0.80
	HIGH	1.39	1.35	1.16	1.26	1.16	1.40	1.25	1.44	1.22	1.55	1.24	1.29	1.25	1.32	1.27	1.44	1.23	1.30	1.28	1.31	1.08
	AVG	1.31	1.27	1.04	1.12	1.04	1.27	1.12	1.30	1.08	1.46	1.18	1.18	1.13	1.17	1.18	1.31	1.12	1.11	1.16	1.13	0.95
Feb	row	1.11	1.11	0.72	0.80	0.72	0.93	0.75	0.85	0.77	1.34	0.86	0.88	96.0	1.02	0.98	1.24	06.0	0.91	0.57	0.61	0.55
	HIGH	1.39	1.35	1.08	1.21	1.13	1.43	1.29	1.23	1.13	1.60	1.30	1.32	1.27	1.31	1.34	1.50	1.32	1.16	1.27	1.25	0.96
	AVG	1.27	1.26	0.95	1.07	0.93	1.19	1.03	1.13	96.0	1.49	1.14	1.13	1.17	1.17	1.16	1.36	1.14	1.09	1.06	1.02	0.83
Mar	row	0.97	1.12	0.72	0.85	0.84	1.06	08'0	1.00	0.78	1.29	1.03	1.04	1.01	0.83	1.04	1.06	1.03	0.89	96.0	0.87	0.74
	HIGH	1.35	1.36	1.14	1.25	1.11	1.37	1.22	1.35	1.27	1.59	1.19	1.21	1.17	1.27	1.23	1.39	1.23	1.00	1.15	1.27	0.93
	AVG	1.18	1.21	0.95	1.03	0.96	1.23	1.03	1.17	1.01	1.42	1.13	1.10	1.06	1.10	1.15	1.24	1.11	0.94	1.07	1.03	0.86
Quarter	Quarterly Avg	1.25	1.25	0.98	1.07	0.98	1.23	1.06	1.20	1.01	1.46	1.15	1.14	1.12	1.15	1.16	1.30	1.12	1.05	1.10	1.06	0.88
										APRI	APRIL TO JUNE 2017	E 2017										
		D1	D2	D3	D4	2 0	9 0	2 0	8 Q	6 0	D10	D11	D12	D13	D14	D15	D16	D17	D18	D20	D21	D22
Apr	row	1.11	1.12	0.77	1.09	0.88	1.13	0.89	1.06	1.02	1.36	0.94	0.89	0.95	0.88	1.04	1.14	1.06	0.74	0.88	0.96	0.79
	HIGH	1.37	1.38	1.11	1.23	1.08	1.28	1.04	1.26	1.08	1.70	1.19	1.22	1.21	1.15	1.24	1.33	1.32	1.19	1.26	1.24	1.05
	AVG	1.26	1.25	0.96	1.15	0.97	1.19	0.98	1.18	1.06	1.46	1.08	1.10	1.11	1.02	1.14	1.22	1.20	1.01	1.07	1.07	0.91
May	row	1.02	1.12	0.54	0.55	0.67	0.87	0.74	06.0	0.64	1.32	0.91	0.93	0.64	1.00	06.0	1.08	0.98	0.68	0.80	0.61	0.65
	HIGH	1.35	1.32	1.02	1.17	1.04	1.29	1.02	1.14	1.15	1.57	1.12	1.21	1.09	1.17	1.18	1.38	1.23	1.12	1.57	1.24	1.03
	AVG	1.22	1.22	0.78	96.0	0.85	1.11	0.30	1.02	06.0	1.46	1.02	1.06	06.0	1.09	1.03	1.24	1.11	0.87	1.07	0.94	0.83
Jun	row	0.99	1.08	0.70	0.81	0.73	0.77	0.70	1.09	69'0	1.31	0.97	0.79	0.78	1.00	1.05	0.93	1.02	0.78	0.91	0.67	0.81
	HIGH	1.23	1.33	1.06	1.18	1.13	1.42	1.13	1.32	1.18	1.56	1.48	1.45	1.13	1.26	1.31	1.42	1.46	1.31	1.29	1.15	1.26
	AVG	1.16	1.25	96.0	1.06	0.93	1.21	1.03	1.22	1.03	1.44	1.22	1.12	0.93	1.17	1.16	1.22	1.24	1.07	1.12	1.01	1.02
		20,	70,	000	30,	70.0	.,	0 01		90	9,		90	000	98		30			90,1	3	0
Quarterly Avg	r Ava	1.21	1 24	6 6	9	5	117	26:0	114	8	146	ç	§	86. C	<u></u>	÷	23	÷	<u>څ</u>	8	ξ	6

Table 4 - 2017 Distribution Chlorine Residuals

JULY TO SEPTEMBER 2017

 LOW
 1.12
 1.27
 1.01
 0.82
 0.80
 1.13
 0.84
 1.14
 0.94
 1.67
 0.78
 0.99
 1.05
 1.19
 0.87
 0.98
 0.68
 0.68
 0.68
 0.87
 0.98
 0.68
 0.69
 0.69
 1.05
 1.19
 0.18
 0.98
 0.68
 0.68
 0.68
 0.69
 0.69
 1.05
 1.15
 1.15
 1.80
 1.60
 1.34
 1.04
 1.39
 1.32
 1.67
 1.52
 1.43
 1.15
 1.30
 1.30
 1.17
 1.17
 1.39
 1.17
 1.24
 1.04
 1.15
 0.90
 1.14
 1.17
 1.39
 1.17
 1.24
 1.04
 1.15
 0.90
 1.14
 1.17
 1.39
 1.17
 1.24
 1.04
 1.15
 0.90

 LOW
 1.12
 1.30
 1.01
 0.08
 1.01
 0.08
 1.51
 1.51
 1.13
 0.78
 0.80
 0.84
 1.03
 1.11
 0.75
 1.08
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79
 0.79

NOTE: All values in mg/l unless otherwise stated

NOTE: All values in mg/l unless otherwise stated

(0.05 mg/L - minimum standard per Ministry of Er (0.20 mg/L - miminum WUC standard)

Table 5 - 2017 Operational Parameters

			JANUARY			FEBRUARY			MARCH		PLANT PA	PLANT PARAMETERS	MINISTRY MAC	Y MAC
		HIGH	LOW	AVG.	нівн	LOW	AVG.	HIGH	LOW	AVG.	нівн го	HIGH LOW VALUES	HIGH ^(*1)	LOW
COLOUR (*2)	TCU	()	()	()	()	()	()	()	()	()	2.00	00'0	N/A	A
ALUMINUM (*3)	I/8m	24	2	10	21	8	13	17	10	13	100.0	0.0	A/N	4
pH (*2)		7.15	6.88	7.04	7.19	6.90	7.05	7.22	6.87	7.06	7.30	6.50	N/A	A
TURBIDITY (*1)	NTO	90:0	0.02	0.02	0.04	0.02	0.03	0.04	0.03	0.03	1.00	0.00	1.00	0.00
HARDNESS (*2)	mg/L	114	88	101	170	98	116	124	97	109	100	08	N/A	A
TEMPERATURE	၁	3.2	0.2	2.1	9.5	1.4	2.8	6.5	1.4	3.9			A/N	٨
ODOUR/TASTE		()	()	()	()	()	()	()	()	()	in-off	in-offensive	A/N	4
ALKALINITY (*2 and *3)	mg/L	84	70	77	102	9/	84	104	72	83	200	30	A/N	4
CHLORINE RESIDUAL (*1)	mg/L	1.68	1.26	1.48	1.70	1.28	1.49	1.66	1.25	1.48	1.50	08'0	N/A	0.05
			APRIL			MAY			JUNE		PLANT PA	PLANT PARAMETERS	MINISTRY MAC	Y MAC
		НІСН	LOW	AVG.	нівн	LOW	AVG.	HIGH	LOW	AVG.	ивн со	HIGH LOW VALUES	HIGH ^(*1)	LOW
COLOUR (*2)	TCU	()	()	()	()	()	()	()	()	()	2.00	00'0	N/A	A
ALUMINUM ('3)	l/gn	35	13	20	147	9	28	69	7	44	100.0	0.0	N/A	A
pH ('2)		7.18	6.98	7.09	7.21	7.00	7.08	7.19	7.02	7.11	7.30	6.50	N/A	A
TURBIDITY (*1)	NTO	0.06	0.03	0.04	0.10	0.04	0.06	0.07	0.04	0.05	1.00	0.00	1.00	0.00
HARDNESS (*2)	mg/L	112	96	105	140	94	111	108	92	97	100	80	N/A	A
TEMPERATURE	၁့	14.9	6.0	10.2	16.6	10.9	14.0	21.7	16.1	19.4			N/A	A
ODOUR/TASTE		()	()	()	()	()	()	()	()	()	in-off	in-offensive	N/A	A
ALKALINITY (*2 and *3)	mg/L	94	78	84	108	78	87	88	74	79	200	30	N/A	A
CHLORINE RESIDUAL (*1)	/bm	1.57	1 26	1.45	1 78	1 19	1 45	1 79	1 46	1.55	1.50	080	A/N	0.05

Table 5 - 2017 Operational Parameters

			JULY			AUGUST			SEPTEMBER		PLANI PAP	PLANI PAKAMEIEKS		I INIAC
		HIGH	LOW	AVG.	HIGH	LOW	AVG.	HIGH	LOW	AVG.	HIGH LOW VALUES	VVALUES	HIGH("1)	LOW
COLOUR ('2)	TCU	()	()	()	()	()	()	()	()	()	5.00	0.00	Y/N	A
ALUMINUM ("3)	I/8rl	117	29	09	82	56	22	94	34	09	100.0	0.0	Y/N	A
pH (*2)		7.21	6.83	7.08	7.15	88.9	7.04	7.15	7.02	7.08	7.30	6.50	Y/N	A
TURBIDITY (*1)	NTU	0.08	0.05	90.0	0.11	0.05	0.07	0.07	0.05	0.06	1.00	0.00	1.00	0.00
HARDNESS (*2)	mg/L	106	84	96	110	84	26	110	88	100	100	80	A/N	A
TEMPERATURE	၁့	25.1	20.7	23.3	24.9	21.2	23.1	22.8	18.4	20.6			N/A	А
ODOUR/TASTE		()	()	()	()	()	()	()	()	()	in-offensive	ensive	N/A	А
ALKALINITY (*2 and *3)	mg/L	98	72	78	92	02	77	80	20	76	200	30	A/N	А
CHLORINE RESIDUAL ("1)	mg/L	1.71	1.32	1.51	1.84	1.47	1.70	1.82	1.40	1.62	1.50	0.80	N/A	0.05
										'				
			OCTOBER			NOVEMBER			DECEMBER		PLANT PAF	PLANT PARAMETERS	MINISTRY MAC	Y MAC
		нвн	LOW	AVG.	нвн	LOW	AVG.	HIGH	LOW	AVG.	HIGH LOW VALUES	V VALUES	HIGH ^(*1)	LOW
COLOUR (*2)	TCU	()	()	()	()	()	()	()	()	()	5.00	0.00	Y/N	A
ALUMINUM (*3)	I/8rl	84	21	36	30	11	17	25	6	13	100.0	0.0	A/N	А
pH (*2)		7.08	6.72	7.01	7.11	6.93	7.04	7.18	7.00	7.09	7.30	6.50	A/N	A
TURBIDITY (*1)	UTN	0.05	0.03	0.04	0.04	0.02	0.03	90.0	0.02	0.03	1.00	0.00	1.00	0.00
HARDNESS (*2)	mg/L	118	96	103	115	96	103	124	100	111	100	80	A/N	А

Schedule 23 Inorganic Parameters

Item	Parameter
1.	Antimony
2.	Arsenic
3.	Barium
4.	Boron
5.	Cadmium
6.	Chromium
7.	Mercury
8.	Selenium
9.	Uranium

Schedule 24 Organic Parameters

Item	Parameter
1.	Alachlor
2.	Atrazine + N-dealkylated metabolites
3.	Azinphos-methyl
4.	Benzene
5.	Benzo(a)pyrene
6.	Bromoxynil
7.	Carbaryl
8.	Carbofuran
9.	Carbon Tetrachloride
10.	Chlorpyrifos
11.	Diazinon
12.	Dicamba
13.	1,2-Dichlorobenzene
14.	1,4-Dichlorobenzene
15.	1,2-Dichloroethane
16.	1,1-Dichloroethylene (vinylidene chloride)
17.	Dichloromethane
18.	2,4-Dichlorophenol
19.	2,4-Dichlorophenoxy acetic acid (2,4-D)
20.	Diclofop-methyl
21.	Dimethoate
22.	Diquat
23.	Diuron
24.	Glyphosate
25.	Malathion
26.	2-Methyl-4-chlorophenoxyacetic acid
27.	Metolachlor
28.	Metribuzin
29.	Monochlorobenzene
30.	Paraquat
31.	Pentachlorophenol
32.	Phorate
33.	Picloram
34.	Polychlorinated Biphenyls (PCB)
35.	Prometryne
36.	Simazine
37.	Terbufos
38.	Tetrachloroethylene (perchloroethylene)
39.	2,3,4,6-Tetrachlorophenol
40.	Triallate
41.	Trichloroethylene
42.	2,4,6-Trichlorophenol
43.	Trifluralin
44.	Vinyl Chloride

Appendix B -	2017	O.Reg	170/03	Annual	Report
--------------	------	-------	--------	---------------	--------

Windsor Utilities Commission

Windsor Utilities Commission 2017 Annual Summary Report

OPTIONAL ANNUAL REPORT TEMPLATE

Drinking-Water System Number: Drinking-Water System Name: Drinking-Water System Owner: Drinking-Water System Category: Period being reported:

220003421
City of Windsor Drinking Water System
The Windsor Utilities Commission
Large Municipal Residential
Calendar Year 2017

Complete if your Category is Large Municipal Residential or Small Municipal Residential	Complete for all other Categories.
Does your Drinking-Water System serve more than 10,000 people? Yes [X] No [] Is your annual report available to the public at no charge on a web site on the Internet? Yes [X] No []	Number of Designated Facilities served: Did you provide a copy of your annual report to all Designated Facilities you serve? Yes [] No []
Location where Summary Report required under O. Reg. 170/03 Schedule 22 will be available for inspection.	Number of Interested Authorities you report to:
The Windsor Utilities Commission 4545 Rhodes Dr. Windsor ON N9A 5T7	Did you provide a copy of your annual report to all Interested Authorities you report to for each Designated Facility? Yes [] No []

Note: For the following tables below, additional rows or columns may be added or an appendix may be attached to the report

List all Drinking-Water Systems (if any), which receive all of their drinking water from your system:

Drinking Water System Name	Drinking Water System Number
Town of Lasalle, ON	220004402
Town of Tecumseh, ON	260004969

Did you provide a copy of your annual report to all Drinking-Water System owners that are connected to you and to whom you provide all of its drinking water?

Yes [X] No []

Indicate how you notified system users that your annual report is available, and is free of charge.

- [X] Public access/notice via the web
- [X] Public access/notice via Government Office
- [] Public access/notice via a newspaper
- [X] Public access/notice via Public Request

Drinking Water Systems Regulations (PIBS 4435e01) December 2017

Page 1 of 7

[] Public access/notice via a Public Libra	ry
[] Public access/notice via other method	

Describe your Drinking-Water System

The Windsor Utilities Commission water treatment facility employs screening, prechlorination (on an as needed basis), pH adjustment (utilizing CO₂), primary disinfection (utilizing ozone), coagulation, flocculation, sedimentation, dual-media filtration with post chlorination and corrosion control adjustment (utilizing phosphoric acid) to treat raw water obtained from the Detroit River.

The water treatment plant pumps sedimentation sludge and backwash water to the sanitary sewer. Treated water from the plant is routed to an on-site reservoir and subsequently pumped into the distribution system from two pumping stations that are co-located nearby the water treatment facilities. Water from the pumping stations satisfies demand for the greater Windsor area including the communities of Tecumseh and LaSalle. A remote reservoir and pumping station provides a re-chlorination facility (using sodium hypochlorite) to provide system pressure and flow to the southwest portion of the city, while a centrally located water tower provides pressure and flow control to the downtown core.

The drinking water system is monitored at various locations, both at the water treatment and pumping stations as well as throughout the transmission system via a Supervisory Control and Data Acquisition (SCADA) system.

List all water treatment chemicals used over this reporting period

Chlorine gas, Sodium Hypochlorite, Carbon dioxide (CO₂), Ozone (generated on-site using liquid oxygen), Calcium Thiosulfate (ozone quench agent), Polyaluminum chloride (PaCl), Filter aid cationic polymer and phosphoric acid (corrosion control agent).

Were any significant expenses incurred to?

- [X] Install required equipment
- [X] Repair required equipment
- [X] Replace required equipment

Please provide a brief description and a breakdown of monetary expenses incurred

Installed 87 new public-use fire hydrants through capital projects.

Replaced 58 existing public-use fire hydrants through capital projects.

Installed 11.0 km of watermain < 400 mm and 0.5 km of watermain = 400 mm.

Decommissioned approximately 12.4 km of watermain <400 mm and decommissioned 0.5 km watermain >400 mm.

Mirlees diesel engines removed and one was replaced with Caterpillar engine at the AJ Brian pumping station. This was a normal life cycle replacement.

Drinking Water Systems Regulations (PIBS 4435e01) December 2017

Page 2 of 7

Windsor Utilities Commission 2017 Annual Summary Report

Replaced the east intake screens at the AJ Brian pumping station. This was a normal life cycle replacement.

Began improvements to the Security System at the AH Weeks Treatment plant. This was a normal life cycle replacement.

Phase two of the three phase roof replacement for the AH Weeks Treatment plant was completed. This was a normal life cycle replacement.

Replaced / installed 8,002 of new water meter units ranging in size from 5/8" to 8".

Provide details on the notices submitted in accordance with subsection 18(1) of the Safe Drinking-Water Act or section 16-4 of Schedule 16 of O.Reg.170/03 and reported to Spills Action Centre

Incident Date	Parameter	Result	Unit of Measure	Corrective Action	Corrective Action Date
March 3, 2017	AWQI #132562 Lead at Hydrant	Lead results of 0.0139 mg/L at distribution system hydrant located at 505 Dougall Ave.	mg/L	Resampled initial location, downstream and up stream of the location.	March 9, 2017
April 24, 2017	AWQI #132294 Free Chlorine Residual 0.01 mg/L WS0386-05 Blow Off	Free Chlorine Residual of 0.01 mg/L	mg/L	After a total of 1 hour of flushing a free chlorine residual of 1.09 mg/L was obtained. The adverse was recorded on a New Watermain not commissioned and segregated by backflow prevention from the live DWS.	April 24, 2017
May 31, 2017	AWQI #133210 Free Chlorine Residual 0.03 mg/L at hydrant in front of 3728 Blackburn St.	Free Chlorine residual of 0.03	mg/L	After flushing the hydrant for 25 minutes a free chlorine residual of 0.44 mg/L was obtained.	May 3, 2017
June 5, 2017	AWQI #133257 On June 3, 2017 Treated Water (TW) Free Chlorine residual at 9:50 a.m. was 0.03 mg/L.	Treated Water (TW) Free Chlorine residual at 9:50 a.m. was 0.03	mg/L	Free Residual Chlorine on treated water (TW) June 3, 2017 at 9:45 a.m. 0.05 mg/L, 9:50 a.m. 0.03 mg/L, 9:55 a.m. 0.01 mg/L, 10:00 a.m. 0.03 mg/L, 10:05 a.m. 0.11 mg/L, 10:15 a.m. 0.08 mg/L, 10:20 a.m. 0.01 mg/L, 10:25	June 5, 2017

Drinking Water Systems Regulations (PIBS 4435e01) December 2017

Page 3 of 7

Ontario Drinking-Water Systems Regulation O. Reg. 170/03

				a.m. 0.13 mg/L. During maintenance in the plant the Chlorine injection to the treated water clearwell was shut down inadvertently. Chlorine injection to AJ Brian and George Avenue pumping stations was operational at all times. Average Chlorine values during this time for AJ Brian 1.08 mg/L and for George Avenue was 1.45 mg/L. No customers have been affected.	
July 12, 2017	AWQI #133994 Free residual chlorine reading of 0.04 mg/L at hydrant in front of 3728 Blackburn street. Hydrant is on a weekly flushing maintenance system.	Free residual chlorine reading of 0.04 mg/L at hydrant in front of 3728 Blackburn street. Hydrant is on a weekly flushing maintenance system.	mg/L	After flushing the hydrant for 20 minutes a free residual chlorine reading of 0.44 has been obtained.	July 12, 2017
Nov. 21, 2017	AWQI #138140 1 Total Coliform (TC) Count at Sample station D02- -2350 College Avenue	1 Total Coliform	CFU/100 mL	Resample initial location downstream and upstream of the location.	Nov. 23, 2017

Microbiological testing done under the Schedule 10, 11 or 12 of Regulation 170/03, during this reporting period.

	Number of Samples	Range of E.Coli Results (min #)-(max #)	Range of Total Coliform Results (min #)-(max #)	Number of HPC Samples	Range of HPC Results (min #)-(max #)
Raw	240	0 - 1100	0 - 8500	240	<10 to >2000
Treated	1959	0 - 0	0 - 0	1476	<10 to >2000
Distribution	1970	0 - 0	0 - 1	1160	<10 to >2000

Operational testing done under Schedule 7, 8 or 9 of Regulation 170/03 during the period covered by this Annual Report.

Drinking Water Systems Regulations (PIBS 4435e01) December 2017

Page 4 of 7

Ontario Drinking-Water Systems Regulation O. Reg. 170/03

	Number of Grab Samples	Range of Results (min #)-(max #)	Unit of Measure
Turbidity	365	0.02 - 0.11	NTU
Chlorine	365	1.44 - 1.72	mg/L

NOTE: For continuous monitors use 8760 as the number of samples.

Summary of additional testing and sampling carried out in accordance with the requirement of an approval, order or other legal instrument.

Date of legal instrument issued	Parameter	Date Sampled	Result	Unit of Measure
MDWL 025-101	*Bromate - Treated	1-Jan-17 to 31-Dec-17	0.004	mg/L
MDWL 025-101	*Bromate - Distribution	1-Jan-17 to 31-Dec-17	0.004	mg/L

^{*} Reported as Running Annual Average

Summary of Inorganic parameters tested during this reporting period or the most recent sample results.

Parameter	Sample Date	Result Value	Unit of Measure	Exceedance
Antimony	October 4, 2017	0.00008	mg/L	No
Arsenic	October 4, 2017	0.0004	mg/L	No
Barium	October 4, 2017	0.0153	mg/L	No
Boron	October 4, 2017	0.027	mg/L	No
Cadmium	October 4, 2017	0.00001	mg/L	No
Chromium	October 4, 2017	0.00072	mg/L	No
Lead	October 4, 2017	0.00001 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Mercury	October 4, 2017	0.00001 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Selenium	October 4, 2017	0.00015	mg/L	No
Sodium	January 4, 2017	5.66	mg/L	No
Uranium	October 4, 2017	0.000085	mg/L	No
Fluoride	January 4, 2017	0.09	mg/L	No
Nitrite	October 4, 2017	0.003 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Nitrate	October 4, 2017	0.204	mg/L	No

Summary of lead testing under Schedule 15.1 during this reporting period

(applicable to the following drinking water systems; large municipal residential systems, small municipal residential systems, and non-municipal year-round residential systems)

Location Type	Number of Samples	Range of Lead Results (min#) – (max #)	Unit of Measure	Number of Exceedances	
Plumbing	295	0.01 <mdl -="" 44.3<="" td=""><td>ug/L</td><td>29</td></mdl>	ug/L	29	
Distribution	201	0.01 <mdl -="" 13.9<="" td=""><td>ug/L</td><td>1</td></mdl>	ug/L	1	

Drinking Water Systems Regulations (PIBS 4435e01) December 2017

Page 5 of 7

Summary of Organic parameters sampled during this reporting period or the most recent sample results

Parameter	Sample Date	Result Value	Unit of Measure	Exceedance
Alachlor	Oct 4, 2017	0.00002 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Atrazine + N-dealkylated metobolites	Oct 4, 2017	0.00001 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Azinphos-methyl	Oct 4, 2017	0.00005 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Benzene	Oct 4, 2017	0.00032 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Benzo(a)pyrene	Oct 4, 2017	0.000004 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Bromoxynil	Oct 4, 2017	0.00033 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Carbaryl	Oct 4, 2017	0.00005 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Carbofuran	Oct 4, 2017	0.00001 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Carbon Tetrachloride	Oct 4, 2017	0.00016 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Chlorpyrifos	Oct 4, 2017	0.00002 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Diazinon	Oct 4, 2017	0.00002 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Dicamba	Oct 4, 2017	0.00020 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
1,2-Dichlorobenzene	Oct 4, 2017	0.00041 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
1,4-Dichlorobenzene	Oct 4, 2017	0.00036 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
1,2-Dichloroethane	Oct 4, 2017	0.00035 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
1,1-Dichloroethylene (vinylidene chloride)	Oct 4, 2017	0.00033 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Dichloromethane	Oct 4, 2017	0.00035 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
2,4-Dichlorophenol	Oct 4, 2017	0.00015 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
2,4-Dichlorophenoxy acetic acid (2,4-D)	Oct 4, 2017	0.00019 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Diclofop-methyl	Oct 4, 2017	0.0004 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Dimethoate	Oct 4, 2017	0.00003 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Diquat	Oct 4, 2017	0.001 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Diuron	Oct 4, 2017	0.00003 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Glyphosate	Oct 4, 2017	0.001 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Haloacetic Acids (HAA5) - Running Annual Average	Oct 4, 2017	0.0053 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Malathion	Oct 4, 2017	0.00002 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
MCPA	Oct 4, 2017	0.00012 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Metolachlor	Oct 4, 2017	0.00001 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Metribuzin	Oct 4, 2017	0.00002 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Monochlorobenzene	Oct 4, 2017	0.0003 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Paraquat	Oct 4, 2017	0.001 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Pentachlorophenol	Oct 4, 2017	0.00015 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Phorate	Oct 4, 2017	0.00001 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Picloram	Oct 4, 2017	0.001 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Polychlorinated Biphenyls (PCB)	Oct 4, 2017	0.00004 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Prometryne	Oct 4, 2017	0.00003 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Simazine	Oct 4, 2017	0.00001 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
THM – Running Annual Average	Oct 4, 2017	0.0090	mg/L	No
Q1 2017 = 0.006 mg/L	Jan 4, 2017			No

Drinking Water Systems Regulations (PIBS 4435e01) December 2017

Page 6 of 7

Windsor Utilities Commission 2017 Annual Summary Report

Ontario Drinking-Water Systems Regulation O. Reg. 170/03

$Q2\ 2017 = 0.007 \ \text{mg/L}$	April 3, 2017			No
$Q3\ 2017 = 0.012\ mg/L$	July 3, 2017			No
$Q4\ 2017 = 0.011\ mg/L$	Oct 4, 2017			No
Terbofos	Oct 4, 2017	0.00001 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Tetrachlorethylene	Oct 4, 2017	0.00035 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
2,3,4,6-Tetrachlorophenol	Oct 4, 2017	0.00020 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Triallate	Oct 4, 2017	0.00001 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Trichloroethylene	Oct 4, 2017	0.00044 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
2,4,6-Trichlorophenol	Oct 4, 2017	0.00025 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Trifluralin	Oct 4, 2017	0.00002 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No
Vinyl Chloride	Oct 4, 2017	0.00017 <mdl< td=""><td>mg/L</td><td>No</td></mdl<>	mg/L	No

List any Inorganic or Organic parameter(s) that exceeded half the standard prescribed in Schedule 2 of Ontario Drinking Water Quality Standards.

No Inorganic or Organic parameter(s) exceeded half the standard prescribed in Schedule 2 of Ontario Drinking Water Quality Standard.

Drinking Water Systems Regulations (PIBS 4435e01) December 2017

Page 7 of 7

Our Directors

MANAGEMENT TEAM

Helga Reidel President and CEO **Garry Rossi**VP Water Operations

John Wladarski VP Shared Services and COO

Byron ThompsonVP Finance and CFO

Jim Brown VP Hydro Operations

WINDSOR UTILITIES COMMISSION

James Drummond (Chair)

Retired

John Elliott

Councillor, City of Windsor, Ward 2

Councillor, City of Windsor, Ward 9

Paul Borrelli

Councillor, City of Windsor, Ward 10

J. Douglas Lawson
O. Ont. QC. LLD
Counsel, Willis Law

Egidio Sovran,

Hillary Payne

Owner, Sovran CPA, CA &

Associates

Drew Dilkens

Mayor, City of Windsor

Rocco Lucente
President, R. Lucente
Engineering Inc.

